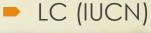

Habitat preference of golden jackal (Canis aureus) in Serbia

Neda Bogdanović, Aleksandra Penezić, Duško Ćirović

Golden jackal and its distribution

- degradation and fragmentation of natural habitats due to rapid human expansion
- low permeability of human-modified landscapes
- strong expansion across entire Europe
- highly adaptive to human-modified habitats

Hypothesis

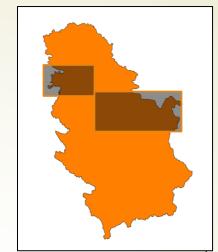

availability of anthropogenic food

absence of wolf

climate changes

intensive modification of natural habitats

3rd International Jackal Symposium Gödöllő, Hungary



Jackal distribution in Serbia

- 80th jackals began to recolonize its former range (expansion)
- high number of jackal observations from mountainous area
- game species
- evidence large number of hunted individuals (~12,000 last year)
- current population estimate in Serbia is 30-40,000 individuals

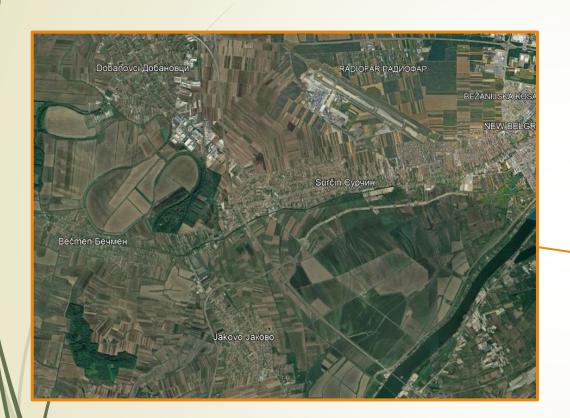
Negotin, Morava valley, Danube valley and Srem most populated areas (based on hunting data)

Telemetry of golden jackals in Serbia

- highly reliable data in a relatively short time
- GPS telemetry data widely used in studies of animal space use, habitat selection and behavior
- jackals monitored since 2017
- beliste foot-hold snares
- chemically immobilized (Ketaxyl)

Telemetry of golden jackals in Serbia

- GPS Plus; Vectronic Aerospace GmbH, Berlin, Germany
- timer-controlled drop-off system
- jackals released at the trap site
- GPS collars scheduled to record a location every 3 hour (8 positions/day).
- GPS relocation success rate > 90%
- 16 individuals collared (9 males and 7 females)
- mean monitoring period 206 days


Neda

3rd International Jackal Symposium Gödöllő, Hungary

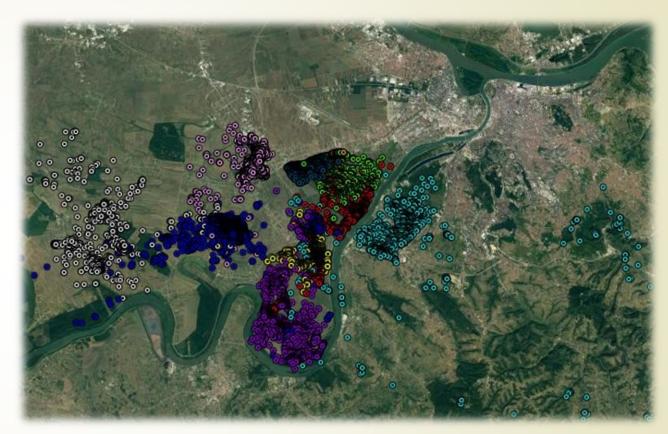
Telemetry of golden jackals in Serbia

- future plans: to collar jackals in other habitats types
- change collar fixation period (2 or 1h)

- jackals captured in suburban habitats
- close vicinity of Belgrade Surčin, Jakovo, Boljevci
- landscape mainly under agriculture (85%)
- highway, national and local roads, irrigation channels

Species distribution modeling (SDM)

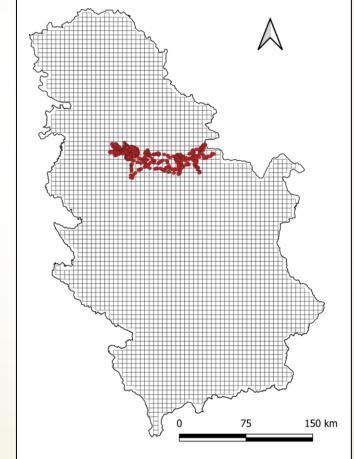
- low permeability of human-transformed landscapes
- species able to adapt to the human-created environmental condition
- to associate known distribution data of species with environmental variables
- understand the relationships between wildlife and environment
- Maxent most frequently used software for ecological niche modeling

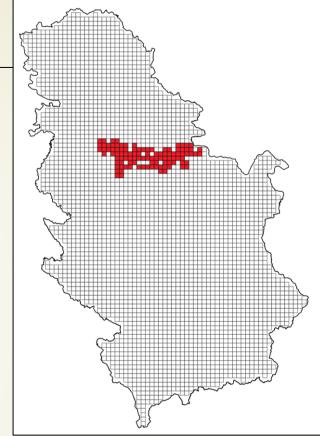

animal populations with unforeseen densities and distributions

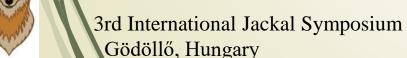
unique opportunity to plan our managements activities

Species distribution modeling - aims

- habitat suitability models with a maximum entropy approach (MaxEnt) to analyze jackals habitat selection patterns
- two different spatial scales (5x5 km and 1x1 km)
- GPS telemetry data
- 23,425 fixations of 16 individuals


We aimed to:


identify environmental variables which drive jackal habitat selection define most suitable jackal habitats in Serbia based on GPS telemetry data discuss jackal rapid expansion in Serbia based on obtained results


Species distribution modeling - data

- Animal next step depends on its current step
- Telemetry data temporal autocorrelation ?

- For each scale, we select cells with at least one GPS fixation
- Calculated center coordinates input data for the model)

Species distribution modeling – validation

 11 environmental variables related to land cover and human infrastructure

QGIS 9

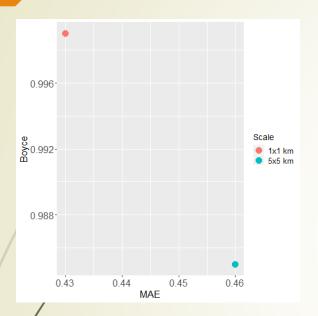
Pearson correlation coefficients (> 0.7) and high

variance inflation factor (VIF's >5)

10 uncorrelated variables

candidate models - Akaike's Information Criterion

or evaluating model performance:


Boyce index (-1 to 1)

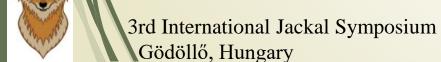
Mean Absolute Error (MAE)

Layer name	Layer description	Source	Format
Roads 1	Distance from centroids to highways	GEOFABRIK	Vector
Roads 2	Distance from centroids to local roads	GEOFABRIK	Vector
	Distance from centroids to footpaths and		
Roads 3	mountain roads	GEOFABRIK	Vector
Water	Distance from centroids to rivers and streams	GEOFABRIK	Vector
Urban	Distance from centroids to infrastructure	CORINE Land Cover	Vector
Hum.pop.	Human population density	Republic Geodetic Authority	Vector
Forest*	% of forests per grid	CORINE Land Cover	Vector
Pasture	% of pastures per grid	CORINE Land Cover	Vector
Scrub	% of scrubs per grid	CORINE Land Cover	Vector
Infrastructure	% of infrastructure per grid	CORINE Land Cover	Vector
Agroland	% of agriculture per grid	CORINE Land Cover	Vector

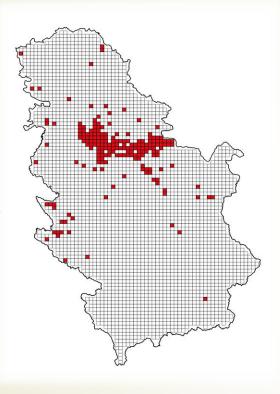
Species distribution modeling - results

- Most important variable at both scales
- Human related variables
- Negligible contribution of agriculture

3rd International Jackal Symposium Gödöllő, Hungary

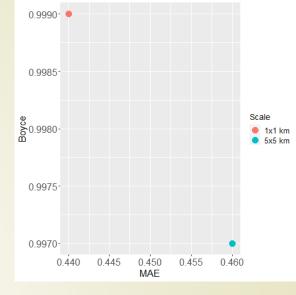

The jackknife procedure and the heuristic method (MaxEnt) used to assess the relative importance of the environmental variables

	Scale		
Variable	5x5 km	1x1 km	
Human population density	51.8	59.8	
Distance to urban areas	18.2	17.9	
Distance to primary roads	1.8	6.6	
Distance to water bodies	2.2	2.8	
Distance to secondary roads	1.9	4	
% Scrubs	0.5	2.8	
Distance to terciary roads	1.2	2.5	
% Infrastructure	18.6	1.3	
% Pastures	0	0.8	
% Agricultural land	3.6	1.3	


Species distribution modeling - results

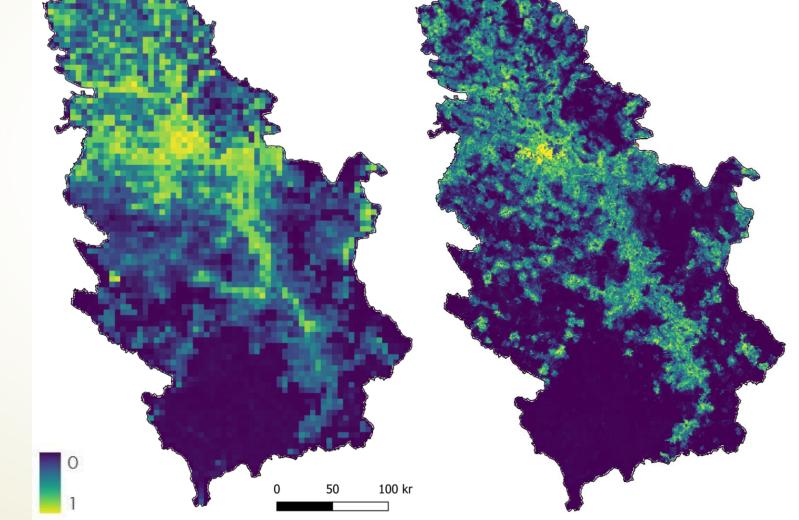
- Threshold- mean predicted suitability value for grids with jackals presence
- 0.54 (5x5 scale) and 0.57 (1x1 scale)
- oarse scale ~ 12,000 km² as highly suitable habitat
- Fine scale ~ 3000 km² as highly suitable habitat

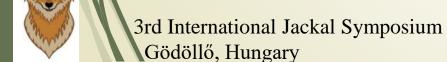
100 km


Species distribution modeling - results

- still most important variable at both scales
- contribution of agriculture even smaller ?

3rd International Jackal Symposium Gödöllő, Hungary


- GPS + jackal occurrence data
- two scales (5x5 and 1x1 km)
- same set of 10 variables used



	Scale	
Variable 	5x5 km	1x1 km
Human population density	68.4	66.3
Distance to urban areas	12.8	12.8
Distance to primary roads	1.8	5.7
Distance to water bodies	0.1	3.4
Distance to secondary roads	0.7	3.3
% Scrubs	1.6	2.6
Distance to terciary roads	2.2	2.1
% Infrastructure	12.3	1.9
% Pastures	0	0.9
% Agricultural land	0	0.8

Species distribution modeling – results

- Threshold- mean predicted suitability value for grids with jackals presence
- 0.54 (5x5 scale) and 0.56 (1x1 scale)
- oarse scale ~ 18,000 km² as highly suitable habitat
- Fine scale ~ 5000 km² as highly suitable habitat

Conclusions and next steps

- It is still necessary to improve our models
- collect more data:

telemetry data – collar more jackals

occurrence data (hunting data, camera traps data, etc.)

- collect data from different habitat types (especially data from hilly and forseted areas)
- include more variables (topography, road permeability, distance to artificial channels...)
- to mark areas where anthropogenic food sources are often illegally dumped (primarlily slaughter waste)

Thank you for your attention!

If you have any questions or suggestion related to our research, we are welcome to hear it

Our emails:

neda.bogdanovic@bio.bg.ac.rs

aleksandra.penezic@bio.bg.ac.rs

dcirovic@bio.bg.ac.rs