

Fine spatial distribution and temporal activity patterns of three mesopredators: A case study from Greece

Giorgos Giannatos¹, Danai-Eleni Michailidou², Stefanos Sgardelis²

¹ BIOSPHERE NGO/Department of Biology, National and Kapodistrian University of Athens, Greece

² Department of Ecology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

HELLENIC REPUBLIC National and Kapodistrian University of Athens

3RD INTERNATIONAL JACKAL SYMPOSIUM 02-04. NOVEMBER 2022 GÖDÖLLŐ, HUNGARY

Species with the same fundamental niche can either

- partition the limited resources and coexist or
 exclude one another through competition
- Coexistence mechanisms
- Segregation
- Spatial Temporal - Trophic
- Differentiated habitat use
- Behavioral modifications

In carnivores

Interference influenced by

- differences in body size
- taxonomic similarity
- dietary overlap

The subordinate species modifies its realized niche to avoid/reduce aggression

Image credit: Isidora Kyriazi

Focus:

Golden jackal (Canis aureus)

Red fox (Vulpes vulpes)

Badger (Meles meles)

Explore:

- Fine-scale spatial distributional patterns
- Daily activity patterns
- Spatial & temporal overlap among species

Study area

- 12 Natura 2000 sites (10 in Peloponnese, 2 in Attica)
- Total study area \approx 143080 ha
- 7 habitat classes
 - Anthropogenic habitats
 - Coastal dunes
 - Grasslands
 - Halophilous vegetation
 - Riparian vegetation
 - Scrubs Phrygana
 - Forests

Study area

- 12 Natura 2000 sites (10 in Peloponnese, 2 in Attica)
- Total study area \approx 143080 ha
- 7 habitat classes
 - Anthropogenic habitats
 - Coastal dunes
 - Grasslands
 - Halophilous vegetation
 - Riparian vegetation
 - Scrubs Phrygana
 - Forests

Camera trap design

- 63 camera trap stations
- Cameras used
 - BUSHNELL Aggressor 24MP No-Glow (Attica)
 - RECONYX HF2X HyperFire 2 Covert IR (Peloponnese)
- Study area was divided in 5 km² grid
- Minimum distance between staions = 1 km
- Spring Autumn 2020
- Minimum sampling days/site = 28
- Mean sampling days per station = 29.47 ± 7.44

Analysis

Relative Abundance Index (RAI)

Number of independent eventsX 100 for each speciesNumber of sampling days

Spatial overlap

 $0 \leq$ Pianka's index ≤ 1

 $\alpha = \Sigma (j_i \times x_i) / (\Sigma j_i^2 \times \Sigma x_i^2)^{1/2}$ $j_i = \text{RAI of species j on camera site i}$ $x_i = \text{RAI of species x on camera site i}$

Daily activity

Probability density function using Kernel density estimation with 1000 bootstrapping iterations for CI estimation

Daily activity overlap

 $0 \leq \Delta \operatorname{coefficient} \leq 1$

Species captured

12 species from 1768 trap days

Species	Number of independent events		
Golden jackal	682		
Red fox	456		
Badger	158		
Hare	156		
Wild boar	145		
Dog	86		
Stone marten	68		
Roe deer	20		
Otter	14		
Feral cat	12		
Hedgehog	2		
Wild cat	1		

Relative Abundance Index per Natura 2000 site and habitat

Spatial distribution overlap

	Anthropogenic habitats	Halophilous vegetation	Coastal dunes	Riparian vegetation	Scrubs - Phrygana	Forests	Total
Golden jackal vs Red fox	0.915	0	0.682	0.498	0.686	0.533	0.721
Golden jackal vs Badger	0.953	0.155	0	0.563	0.558	0.936	0.936
Red fox vs Badger	0.924	0	0	0.873	0.496	0.563	0.563

Daily activity

Daily activity overlap

Conclusions

- Jackals, as highly opportunistic species, show high densities even in Natura 2000 sites with >50% anthropogenic habitats in contrast with foxes and badgers
- Jackals thrive even in areas with relatively unfavorable conditions, like halophilous vegetation
- All species show greatest spatial overlap in anthropogenic habitats, followed by forests and lowest overlap in halophilous vegetation and coastal dunes
- All species modify their daily activity in anthropogenic habitats by extending the duration or intensity of nocturnal activity

Conclusions

- Badgers have similar fine-scale spatial distribution and activity pattern with jackals, perhaps due to another coexistence mechanism (probably low dietary overlap and taxonomic dissimilarity)
- Foxes and jackals saw spatial segregation especially in areas of limited food resources
- Foxes don't seem to modify their activity at the areas of high jackal presence (eg. anthropogenic habitats) or extended their activity in areas of low spatial overlap (scrubs – phrygana)
- Foxes follow the same strategy to avoid interference with badgers

Thank you for your time!